Using Li(+) as the electrochemical messenger to fabricate an aqueous rechargeable Zn-Cu battery.
نویسندگان
چکیده
We propose an aqueous rechargeable Zn-Cu Daniell-type battery. In this system, Li(+) prefers to conduct currents rather than react with the electrodes, while the Zn-Cu electrode couples engage in their electrochemical reactions free from conducting currents. Here Li(+) performs like a messenger and thus could be called the electrochemical messenger.
منابع مشابه
Deposition of ZnO on bismuth species towards a rechargeable Zn-based aqueous battery.
Zn aqueous batteries typically suffer from poor cycle life because water soluble zincate ions are formed during the oxidation of Zn. When Zn is oxidized, most of the Zn2+ ions detach from the current collector and become electrochemically inactive, leaving the battery non-rechargeable. Numerous reports demonstrate the use of Bi2O3 as an electrode additive to enhance electrochemical performance ...
متن کاملBuilding a Rechargeable Zn-Cu Battery Through Employing a Monovalent Selective Cation Exchange Membrane
The Zn-Cu battery is plagued with both the problems of Cu2+ migration into the anodic chamber as well as the problem of shape change of zinc electrodes, where both of these processes together have historically prevented this type of battery technology from being rechargeable. We herein propose using a monovalent selective cation exchange membrane (CIEM) that through X-ray diffraction experiment...
متن کاملAqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode
The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...
متن کاملZn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion.
Rechargeable aqueous Zn/MnO2 battery chemistry in a neutral or mildly acidic electrolyte has attracted extensive attention recently because all the components (anode, cathode, and electrolyte) in a Zn/MnO2 battery are safe, abundant, and sustainable. However, the reaction mechanism of the MnO2 cathode remains a topic of discussion. Herein, we design a highly reversible aqueous Zn/MnO2 battery w...
متن کاملRecent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory
Rechargeable non-aqueous Li-air battery technology offers potential advantages over other existing battery systems in terms of specific energy and energy density, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. Development of efficient cathode catalysts and stable electrolytes for the Li-air battery has been intensively investigated for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 51 34 شماره
صفحات -
تاریخ انتشار 2015